Информационное письмо
Образец оформления статьи
Анкета автора
29.03.2015

RFM-анализ базы данных заказчиков фотографа

Дубовик Алексей Викторович
студент 3 курса факультета математики, информационных технологий и техники Приамурский государственный университет им.Шолом-Алейхема Биробиджан, Россия
Баженов Руслан Иванович
к.п.н., доцент, зав.кафедрой информатики и вычислительной техники факультет математики, информационных технологий и техники Приамурский государственный университет им. Шолом-Алейхема Биробиджан, Россия
Аннотация: В данной статье описывается сегментация клиентов на основе RFM-анализа. Приводится пример анализа на основе базы данных фотографа. Анализ проводится в программном обеспечении Microsoft Excel.
Ключевые слова: RFM-анализ, сегментация, заказчики, база данных, Excel
Электронная версия
Скачать (526.7 Kb)

В наши дни любой фотограф хочет иметь у себя как можно больше заказчиков, которые будут часто нанимать его для фотографирования различного рода мероприятий. Для наилучшего спроса фотограф должен создавать благоприятные условия для стабильного развития своего бизнеса, искать новых клиентов для фотосессии, предлагать новые возможности для имеющихся клиентов. Для этого нужно оценить базу на предмет предоставления благоприятных условий. Поэтому мы воспользуемся RFM-анализом. Он подходит для решения нашего случая, так как индивидуальный предприниматель, чью деятельность мы будем анализировать, занимается фотографированием и созданием фотоальбомов. База данных должна быть представлена на обоюдном соглашении и конфиденциальности.

RFM-анализ является инструментом, позволяющим проводить сегментирование потребителей по уровню лояльности на основе их прошлых действий, прогнозировать их поведение. Его применяют многие ученые и практики в свой деятельности. В.И. Александров показал применение RFM-анализа при разработке таргетированных маркетинговых стратегий в сфере e-commerce [1]. Р.И.Баженов и др. привели разнообразные решения в различных областях [6, 8, 9, 15]. Методику и практику применения RFM-анализа описал Е.П.Голубков [10]. Анализ существующих методов управления клиентской базой для повышения конкурентоспособности аптечной организации провела И.С.Каверина [11]. Е.М.Разумовская и др. разрабатывали стратегии ит-компаний путем сопоставления результатов сегментации клиентов и требований развития ит-рынка [12]. Е.В.Романенко и А.Г.Кравец реализовали RFM-анализ в информационной системы «TOUREAST: CRM AI» [13]. Как увеличить продажи дистрибьюторской сети на основе RFM-анализа предложила Т.И.Сорокина [14]. Зарубежные ученые также применяют выделенный метод в своих исследованиях [16, 18].

RFM – это аббревиатура от слов Recency - новизна, Frequency – частота и Monetary, что означает затраты или вложения [17].

Recency – Дата последнего заказа клиента наших услуг.

Frequency –Количество общих покупок наших услуг клиентом.

Monetary – На какую сумму клиенты купили наши услуги

Во время расчета RFM-анализа необходимо узнать какие клиенты лучше подходят для работы с ними, а с какими можно как реже взаимодействовать, или вовсе отказаться от сотрудничества с ними.

Для того чтобы проделать данный анализ, мы воспользуемся MS Excel и готовой базой данных заказчиков (рис.1).
Рис. 1 Таблица всех данных
Рис. 1 Таблица всех данных

Для начала требуется привести данную таблицу в упрощенный вид и сделать меньшее количество столбцов. У нас будут три столбца: Заказчики; Дата заказа; Сумма заказа (рис.2). 
Рис. 2 Таблица необходимых сведений

Рис. 2 Таблица необходимых сведений

После этого необходимо привести данные для проведения RFM-анализа, для чего создадим таблицу на основе инструмента «Сводная таблица».

В полученной таблице (рис.3) видно, что «Высшее учебное заведение» которое совершило 12 заказов общей стоимостью 516 800 рублей, и последний его заказ был совершен 25.12.2014.

Теперь, когда таблица готова и приведена в нужный вид, перейдем непосредственно к самому RFM-анализу.

Также мы будем оценивать заказчиков и разделим их на 5 категорий. Где в первую категорию попадут заказчики с «наихудшими» показателями, а в пятую категорию – с «наилучшими». Для каждой категории в процентное соотношение с шагом в 20%.

В показатель «M», первой категории, попадут те заказчики, которые принимали услуги фотографа и принесли ему до 20% прибыли от максимальной суммы всех значении поля «M». Во вторую категорию попадут от 20% до 40% от той же максимальной суммы. Так будет продолжаться, вплоть, до пятой категории, куда попадут заказчики с процентным соотношением от 80% до 100% принесенной прибыли. Аналогично будем проделывать и с показателями «R» и «F». 

Рис.3 Готовая таблица

Рис.3 Готовая таблица

На этом мы закончили RFM-анализ. Как мы видим «Фото для газет» является наихудшим клиентом для нашего фотографа, и имеет показатели в виде «111» (Recency – 1; Frequency – 1; Monetary – 1). Так как данное предложение не используется часто (232 дня), то можно и вовсе отказаться от них, хотя, дополнительный заработок не помешает.

С такими заказчиками фотографы предпочитают найти взаимодействовать по-другому. Может кто-то и для наилучшей прибыли пытаются найти и таких клиентов, взаимодействовать в разных кругах своей деятельности, А также привлекать больше клиентов, для того чтобы заинтересовался и как можно чаще брал услуги. Либо, некоторые считают их «одноразовыми» клиентами, и предпочитают не уделять собственное время на них, а лучше брать побольше выгодных предложений, наиболее «перспективных» заказчиков, которые имеют более высокие RFM показатели были приближены к показателям равным «555». Нужно улучшать отношения между заказчиками и фотографом, и предлагать новые варианты своих услуг.

Также можно и провести различные анализы, делая выводы на основе RFM-показателей заказчиков. Например, существует клиент с показателем «155» (Recency – 1; Frequency – 5; Monetary – 5). Данные интерпретируются, так - с данным клиентом поддерживается слабая связь, возможно, клиент не часто нуждается в услугах фотографов или он использует замену своему, постоянному. В таком случае можно либо лично поинтересоваться у клиента, нужны ли ему наши услуги в дальнейшем.

Существуют заказчики с показателями «511». Это те клиенты, которые только что обратились к фотографу и являются «новичками». Фотограф старается налаживать теплые отношения с данными клиентами, не разочаровать их.

Как видим, данный RFM-анализ полезен для сегментирования клиентов в те или иные категории и позволяет нам изучить их. После распределения и изучения клиентов мы можем составлять свои индивидуальные подходы к ним, для того чтобы увеличить прибыль нашего фотографа.

Данное исследование может быть использовано в других фотостудиях, в обучении начинающих фотографов и студентов различных направлений и специальностей [2 -5, 7].

Список литературы:

  1. Александров В.И. Применение RFM-анализа при разработке таргетированных маркетинговых стратегий в сфере e-commerce // Маркетинг и маркетинговые исследования. 2014. № 5. С. 332-339.
  2. Баженов Р.И. О применении балльно-рейтинговой системы для оценивания курсовых работ по дисциплине «Интеллектуальные системы и технологии» // Приволжский научный вестник. 2014. № 5 (33). С. 135-138.
  3. Баженов Р.И. Об организации деловых игр в курсе «Управление проектами информационных систем» // Научный аспект. 2014. Т. 1. № 1. С. 101-102.
  4. Баженов Р.И. Об организации научно-исследовательской практики магистрантов направления «Информационные системы и технологии» // Современные научные исследования и инновации. 2014. № 9-2 (41). С. 62-69.
  5. Баженов Р.И. Проектирование методики обучения дисциплины «Информационные технологии в менеджменте»// Современная педагогика. 2014. № 8 (21). С. 24-31.
  6. Баженов Р.И., Векслер В.А., Гринкруг Л.С. RFM-анализ клиентской базы в прикладном решении 1С: Предприятие 8.3 // Информатизация и связь. 2014. №2. С. 51-54.
  7. Баженов Р.И., Лобанова А.М. Обучение основам предпринимательства в компьютерной экономической игре «Капитализм 2» // Экономика и менеджмент инновационных технологий. 2014. № 4 (31). С. 35.
  8. Векслер В.А., Баженов Р.И. Определение взаимосвязи номенклатурных позиций средствами 1С:Предприятие 8.3// Современные научные исследования и инновации. 2014. № 7 (39). С. 45-49.
  9. Векслер В.А., Баженов Р.И. Формирование модели обучения взрослых основам информационных технологий: региональный аспект: монография. - Биробиджан: Издательский центр ФГБОУ ВПО «ПГУ им. Шолом-Алейхема», 2014. 126 с.
  10. Голубков Е.П. RFM-анализ: методика и практика применения // Маркетинг в России и за рубежом. 2013. № 6. C. 11-24.
  11. 11. Каверина И.С. Анализ существующих методов управления клиентской базой для повышения конкурентоспособности аптечной организации // Бюллетень сибирской медицины. 2014. Т. 13. № 4. С. 172-180.
  12. Разумовская Е.М., Куцевол Н.Г., Попов М.Л. Разработка стратегии ит-компаний путем сопоставления результатов сегментации клиентов и требований развития ит-рынка // Ученые записки Казанского университета. Серия: Гуманитарные науки. 2011. Т. 153. № 4. С. 211-221.
  13.  Романенко Е.В., Кравец А.Г. Некоторые вопросы проектирования и реализации распределенной информационной системы “TOUREAST: CRM AI” // Прикаспийский журнал: управление и высокие технологии. 2013. № 4. С. 165-176.
  14. Сорокина Т.И. Как увеличить продажи дистрибьюторской сети // Молочная промышленность. 2015. № 2. С. 13-14.
  15. Якимов А.С., Баженов Р.И. Сегментация клиентов с помощью RFM-анализа // Экономика и менеджмент инновационных технологий. 2015. № 1 [Электронный ресурс]. URL: http://ekonomika.snauka.ru/2015/01/7064 (дата обращения: 27.03.2015).
  16. Mahboubeh K., Kiyana Z., Sarah A., Somayeh A. Estimating customer lifetime value based on RFM analysis of customer purchase behavior: Case study // Procedia Computer Science. 2011. № 3. C. 57-63.
  17. Wikipedia. RFM-анализ. [Электронный ресурс]. // Википедия: свободная энциклопедия. URL: https://ru.wikipedia.org/wiki/RFM-%D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D0%B7 (дата обращения: 27.03.15).
  18. Ya-Han H., Tzu-Wei Y. Discovering valuable frequent patterns based on RFM analysis without customer identification information. // Knowledge-Based Systems. 2014. Т. 61. C. 76-88.